

GISAXS: A Versatile Tool for the Study of Structure and Kinetics of Organic Thin Films on Nanoscopic Length Scales

Detlef-M. Smilgies CHESS G-line Division Cornell University

Small-angle Scattering Under Grazing-incidence (GISAXS)

Period	Scattering Angle @ 10 keV
10 nm	0.7°
100 nm	0.07°

Scattering Contributions – Scattering Communities

Nanostructured Materials via Self-assembly

Example: Diblock Copolymers

two inmiscible chains connected by chemical bond

- → many morphologies (spheres, cylinders, lamellae)
- → typical microstructure periods of 10 nm to 100 nm
- \rightarrow 3D powders with domain sizes of 1 µm to 10 µm

Block Copolymer Thin Films

interfaces air-polymer and polymer-substrate give rise to preferential ordering

example: lamellar phase

strong preference: of one block to interface

PS-PMMA / Si oxide: parallel lamellae no preference: chain-stretching at interface

PS-PMMA /
PS-PMMA
random copolymer:
perpendicular lamellae

Scattering from a Lamellar System

Smilgies, NSLS-II

Polystyrene-Polybutadiene: A morphological transition

Chain-length dependent morphology:

Short chains (N < 400): parallel lamellae Long chains (N > 1000): perp. lamellae

Copolymer Blends or: What lies below the surface?

Smilgies, NSLS-II

Time-Dependent Studies I: Stability of Polymer Films

Q: Are spin-coated polymer films stable?

→ experiment: expose film to solvent vapor

Time-Dependent Studies II: Swelling and Drying

before vapor treatment

during exposure to toluene vapor -

after drying for 10 min

Smilgies et al., SRN 15(5), 32 (2002).

Smilgies, NSLS-II

Nano-Composites

Example: matrix silicated, spheres organic

SEM edge on: monolayer of hollow spheres

GISAXS from a Monolayer of Voids

Time-Dependent Studies III: Calcination

Composit EO1 before, 100°C, 200 °C, 300 °C, 400 °C, 500 °C, after 10 min, back to RT

Summary: GISAXS

- Mesoscopic length scales:
 5-100 nm
- Surface sensitive
- Internal film structure
- In-situ experiments
- Real-time studies

GISAXS - Availability

Cornell student Sterling Cornaby aligning the new G1 GISAXS stage.

CHESS: D1 and G1

ESRF: ID1, ID10A&B, ID13

HASYLAB: BW2, BW4

LURE

NSLS: X22B

Acknowledgements

Papadakis Group (Leipzig/Munich)

- Christine Papadakis
 - Peter Busch
 - Dorthe Posselt

Ober Group (Cornell)

- Xuefa Li and Mingqi Li
- •Katsuji Douki and Ken Goto
 - Chris Ober

Wiesner Group (Cornell)

- Phong Du and Anorag Jain
 - Uli Wiesner

Facilities & Beamlines

- Ernie Fontes, CHESS D-line
- Oleg Konovalov, ESRF ID10B
 - Sterling Cornaby, CHESS G1
 - Joel Brock & Sol Gruner

Funding

NSF, NIH, DFG, NATO